Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Med Educ ; 23(1): 805, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884936

RESUMO

BACKGROUND: Developing research skills and scholarship are key components of medical education. The COVID-19 pandemic necessitated that all teaching be delivered online. We introduced an approach to small group teaching in the academic year 2020-2021 online which involved students in an active (ongoing) research study to develop their research skills. METHODS: We acquired student feedback to evaluate their perspectives quantitatively on development of research and scholarship skills, teaching content and format, and tutor performance using this teaching approach. In addition, we captured free text responses from both students and tutors on the positives and negatives of our course, and their suggested improvements. We also compared summative assessment marks for the online/active research course (2020-2021) with those obtained from previous (2017-2019) and subsequent (2021-2023) teaching sessions. RESULTS: Students were largely positive about most aspects of the online course utilising an active research study (n = 13). Students agreed that they were able to acquire research skills, particularly related to data analysis, transferable skills, and giving scientific presentations. A one-way ANOVA revealed no significant difference for assessment marks across all five teaching years (two years prior and two years following the online/active research course), indicating that the course achieved the learning outcomes. Students enjoyed the convenience of online teaching and the availability of course resources, but least liked the lack of in-person interaction and laboratory training. Tutors enjoyed the collaborative aspects of online teaching, but least liked the lack of face-to-face interactions with students. CONCLUSIONS: Our study demonstrates that delivering online teaching which involves students in active research engages and motivates them to develop their research and scholarship skills. We recommend that educators consider incorporating a current research study in their undergraduate courses as this can enhance the student learning experience as well as the research project itself.


Assuntos
Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Currículo , Pandemias , Aprendizagem , Ensino
2.
Invest Ophthalmol Vis Sci ; 64(13): 23, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37847226

RESUMO

Purpose: Achromatopsia is a rare inherited disorder rendering retinal cone photoreceptors nonfunctional. As a consequence, the sizable foveal representation in the visual cortex is congenitally deprived of visual input, which prompts a fundamental question: is the cortical representation of the central visual field in patients with achromatopsia remapped to take up processing of paracentral inputs? Such remapping might interfere with gene therapeutic treatments aimed at restoring cone function. Methods: We conducted a multicenter study to explore the nature and plasticity of vision in the absence of functional cones in a cohort of 17 individuals affected by autosomal recessive achromatopsia and confirmed biallelic disease-causing CNGA3 or CNGB3 mutations. Specifically, we tested the hypothesis of foveal remapping in human achromatopsia. For this purpose, we applied two independent functional magnetic resonance imaging (fMRI)-based mapping approaches, i.e. conventional phase-encoded eccentricity and population receptive field mapping, to separate data sets. Results: Both fMRI approaches produced the same result in the group comparison of achromatopsia versus healthy controls: sizable remapping of the representation of the central visual field in the primary visual cortex was not apparent. Conclusions: Remapping of the cortical representation of the central visual field is not a general feature in achromatopsia. It is concluded that plasticity of the human primary visual cortex is less pronounced than previously assumed. A pretherapeutic imaging workup is proposed to optimize interventions.


Assuntos
Defeitos da Visão Cromática , Córtex Visual , Humanos , Células Fotorreceptoras Retinianas Cones/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Mutação
3.
Acta Ophthalmol ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776074

RESUMO

PURPOSE: Data are limited pertaining to the long-term benefits of aflibercept treatment for neovascular age-related macular degeneration (nAMD). The aim of this study was to provide outcomes, safety, durability and quality-of-life data with aflibercept using a modified treat, extend and fixed regime over 4 years. METHODS: Prospective, multicentre, single cohort observational study of treatment-naïve nAMD participants treated with aflibercept as 2-year extension of the MATE-trial that compared early and late Treat-and-Extend for 2 years. Refracted ETDRS best corrected visual acuity (BCVA), central retinal thickness (CRT), treatment interval and adverse events were assessed. Quality-of-life was measured using the Macular Disease Dependent Quality of Life (MacDQoL) and Macular Disease Treatment Satisfaction Questionnaires (MacTSQ). RESULTS: Twenty-six of 40 participants completing the MATE-trial were enrolled with 20 completing the total 4-year study. Mean BCVA was 60.7 at Month 0 and 64.8 ETDRS letters at Month 48 while CRT decreased from 423.7 µm to 292.2 µm. Five participants discontinued treatment due to inactivity. The mean number of treatments and visits for the remaining participants was 27 and 30.0, respectively, with treatment intervals extended to 12 weeks in four participants at Month 48. Both AMD-specific QoL and treatment satisfaction remained stable between Months 0 and 48 and mean BCVA significantly correlated with AMD-specific QoL scores at Months 12, 24 and 48. CONCLUSIONS: Results suggest that BCVA can be maintained over 48 months when following a treat-extend-and-fix regimen of aflibercept with intervals out to 12 weeks, while maintaining AMD-specific QoL and treatment satisfaction.

4.
Pilot Feasibility Stud ; 9(1): 63, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081576

RESUMO

BACKGROUND/OBJECTIVES: In healthcare research investigating complex interventions, gaps in understanding of processes can be filled by using qualitative methods alongside a quantitative approach. The aim of this mixed-methods pilot trial was to provide feasibility evidence comparing two treatment regimens for neovascular age-related macular degeneration (nAMD) to inform a future large-scale randomised controlled trial (RCT). SUBJECTS/METHODS: Forty-four treatment-naïve nAMD patients were followed over 24 months and randomised to one of two treatment regimens: standard care (SC) or treat and extend (T&E). The primary objective evaluated feasibility of the MATE trial via evaluations of screening logs for recruitment rates, nonparticipation and screen fails, whilst qualitative in-depth interviews with key study staff evaluated the recruitment phase and running of the trial. The secondary objective assessed changes in visual acuity and central retinal thickness (CRT) between the two treatment arms. RESULTS: The overall recruitment rate was 3.07 participants per month with a 40.8% non-participation rate, 18.51% screen-failure rate and 15% withdrawal/non-completion rate. Key themes in the recruitment phase included human factors, protocol-related issues, recruitment processes and challenges. Both treatment regimens showed a trend towards a visual acuity gain at month 12 which was not maintained at month 24, whilst CRT reduced similarly in both regimens over the same time period. These were achieved with one less treatment following a T&E regimen. CONCLUSION: This mixed-methodology, pilot RCT achieved its pre-defined recruitment, nonparticipation and screen failure rates, thus deeming it a success. With some minor protocol amendments, progression to a large-scale RCT will be achievable.

5.
Sci Rep ; 13(1): 5008, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973337

RESUMO

Macular degeneration (MD) embodies a collection of disorders causing a progressive loss of central vision. Cross-sectional MRI studies have revealed structural changes in the grey and white matter in the posterior visual pathway in MD but there remains a need to understand how such changes progress over time. To that end we assessed the posterior pathway, characterising the visual cortex and optic radiations over a ~ 2-year period in MD patients and controls. We performed cross-sectional and longitudinal analysis of the former. Reduced cortical thickness and white matter integrity were observed in patients compared to controls, replicating previous findings. While faster, neither the rate of thinning in visual cortex nor the reduction in white matter integrity during the ~ 2-year period reached significance. We also measured cortical myelin density; cross-sectional data showed this was higher in patients than controls, likely as a result of greater thinning of non-myelinated tissue in patients. However, we also found evidence of a greater rate of loss of myelin density in the occipital pole in the patient group indicating that the posterior visual pathway is at risk in established MD. Taken together, our results revealed a broad decline in grey and white matter in the posterior visual pathway in bilateral MD; cortical thickness and fractional anisotropy show hints of an accelerated rate of loss also, with larger effects emerging in the occipital pole.


Assuntos
Degeneração Macular , Substância Branca , Humanos , Vias Visuais/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética , Lobo Occipital , Substância Branca/diagnóstico por imagem , Degeneração Macular/diagnóstico por imagem
6.
PLoS One ; 17(11): e0269353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374838

RESUMO

Although coronavirus disease 2019 (COVID-19) affects the respiratory system, it can also have neurological consequences leading to cognitive deficits such as memory problems. The aim of our study was to assess the impact of COVID-19 on working memory function. We developed and implemented an online anonymous survey with a working memory quiz incorporating aspects of gamification to engage participants. 5428 participants successfully completed the survey and memory quiz between 8th December 2020 and 5th July 2021 (68.6% non-COVID-19 and 31.4% COVID-19). Most participants (93.3%) completed the survey and memory quiz relatively rapidly (mean time of 8.84 minutes). Categorical regression was used to assess the contribution of COVID status, age, time post-COVID (number of months elapsed since having had COVID), symptoms, ongoing symptoms and gender, followed by non-parametric statistics. A principal component analysis explored the relationship between subjective ratings and objective memory scores. The objective memory scores were significantly correlated with participants' own assessment of their cognitive function. The factors significantly affecting memory scores were COVID status, age, time post-COVID and ongoing symptoms. Our main finding was a significant reduction in memory scores in all COVID groups (self-reported, positive-tested and hospitalized) compared to the non-COVID group. Memory scores for all COVID groups combined were significantly reduced compared to the non-COVID group in every age category 25 years and over, but not for the youngest age category (18-24 years old). We found that memory scores gradually increased over a period of 17 months post-COVID-19. However, those with ongoing COVID-19 symptoms continued to show a reduction in memory scores. Our findings demonstrate that COVID-19 negatively impacts working memory function, but only in adults aged 25 years and over. Moreover, our results suggest that working memory deficits with COVID-19 can recover over time, although impairments may persist in those with ongoing symptoms.


Assuntos
COVID-19 , Transtornos Cognitivos , Humanos , Adulto , Adolescente , Adulto Jovem , COVID-19/complicações , Memória de Curto Prazo , Inquéritos e Questionários , Transtornos Cognitivos/psicologia , Autorrelato
7.
Invest Ophthalmol Vis Sci ; 63(5): 35, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35622355

RESUMO

Purpose: The aim of this study was to assess both retinal and cortical structure in a cohort of patients with long-term acquired central retinal disease in order to identify potential disease biomarkers and to explore the relationship between the anterior and posterior visual pathways. Methods: Fourteen participants diagnosed with long-term central retinal disease underwent structural assessments of the retina using spectral-domain optical coherence tomography, including macular ganglion cell layer (GCL) and peripapillary retinal nerve fiber layer (pRNFL) thickness. Structural magnetic resonance imaging was used to measure visual cortex, including cortical volume of the entire occipital lobe and cortical thickness of the occipital pole and calcarine sulcus, representing the central and peripheral retina, respectively. Results: Mean thickness was significantly reduced in both the macular GCL and the inferior temporal pRNFL across patients. Cortical thickness was significantly reduced in both the occipital pole and calcarine sulcus, representing the central and peripheral retina, respectively. Disease duration significantly correlated with GCL thickness with a large effect size, whereas a medium effect size suggests the possibility that cortical thickness in the occipital pole may correlate with visual acuity. Conclusions: Long-term central retinal disease is associated with significant structural changes to both the retina and the brain. Exploratory analysis suggests that monitoring GCL thickness may be a sensitive biomarker of disease progression and reductions in visual cortical thickness may be associated with reduced visual acuity. Although this study is limited by its heterogeneous population, larger cohort studies would be needed to better establish some of the relationships detected between disease dependent structural properties of the anterior and posterior visual pathway given the effect sizes reported in our exploratory analysis.


Assuntos
Doenças Neurodegenerativas , Doenças Retinianas , Atrofia/patologia , Biomarcadores , Humanos , Doenças Neurodegenerativas/patologia , Retina/patologia , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia
8.
Neuroimage Clin ; 33: 102925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34959047

RESUMO

Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augmentation therapies. To investigate the status of the visual cortex in these patients, we performed a multi-centre study focusing on the cortical structure of regions that normally receive predominantly cone input. Using high-resolution T1-weighted MRI scans and surface-based morphometry, we compared cortical thickness, surface area and grey matter volume in foveal, parafoveal and paracentral representations of primary visual cortex in 15 individuals with ACHM and 42 normally sighted, healthy controls (HC). In ACHM, surface area was reduced in all tested representations, while thickening of the cortex was found highly localized to the most central representation. These results were comparable to more widespread changes in brain structure reported in congenitally blind individuals, suggesting similar developmental processes, i.e., irrespective of the underlying cause and extent of vision loss. The cortical differences we report here could limit the success of treatment of ACHM in adulthood. Interventions earlier in life when cortical structure is not different from normal would likely offer better visual outcomes for those with ACHM.


Assuntos
Defeitos da Visão Cromática , Córtex Visual , Adulto , Defeitos da Visão Cromática/congênito , Defeitos da Visão Cromática/diagnóstico por imagem , Defeitos da Visão Cromática/genética , Fóvea Central , Humanos , Córtex Visual Primário , Células Fotorreceptoras Retinianas Cones , Córtex Visual/diagnóstico por imagem
9.
Front Neurosci ; 15: 718958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720857

RESUMO

Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness, and cortical surface area) of multiple visual cortical regions in ACHM (n = 15) compared to normally sighted controls (n = 42) to determine the cortical changes that are associated with the retinal characteristics of ACHM. Surface-based morphometry was applied to T1-weighted MRI in atlas-defined early, ventral and dorsal visual regions of interest. Reduced grey matter volume in V1, V2, V3, and V4 was found in ACHM compared to controls, driven by a reduction in cortical surface area as there was no significant reduction in cortical thickness. Cortical surface area (but not thickness) was reduced in a wide range of areas (V1, V2, V3, TO1, V4, and LO1). Reduction in early visual areas with large foveal representations (V1, V2, and V3) suggests that the lack of foveal input to the visual cortex was a major driving factor in morphological changes in ACHM. However, the significant reduction in ventral area V4 coupled with the lack of difference in dorsal areas V3a and V3b suggest that deprivation of chromatic signals to visual cortex in ACHM may also contribute to changes in cortical morphology. This research shows that the congenital lack of cone input to the visual cortex can lead to widespread structural changes across multiple visual areas.

10.
Brain Struct Funct ; 226(9): 2855-2867, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34529124

RESUMO

Macular degeneration (MD) causes central vision loss, removing input to corresponding representations in the primary visual cortex. There is disagreement concerning whether the cortical regions deprived of input can remain responsive, and the source of reported cortical responses is still debated. To simulate MD in controls, normally sighted participants viewed a bright central disk to adapt the retina, creating a transient 'retinal lesion' during a functional MRI experiment. Participants viewed blocks of faces, scrambled faces and uniform grey stimuli, either passively or whilst performing a one-back task. To assess the impact of the simulated lesion, participants repeated the paradigm using a more conventional mean luminance simulated scotoma without adaptation. Our results suggest our attempt to create a more realistic simulation of a lesion did not impact on responses in the representation of the simulated lesion. While most participants showed no evidence of stimulus-driven activation within the lesion representation, a few individuals (22%) exhibited responses similar to a participant with juvenile MD who completed the same paradigm (without adaptation). Reliability analysis showed that responses in the representation of the lesion were generally consistent irrespective of whether positive or negative. We provide some evidence that peripheral visual stimulation can also produce responses in central representations in controls while performing a task. This suggests that the 'signature of reorganization of visual processing', is not found solely in patients with retinal lesions, consistent with the idea that activity may be driven by unmasked top-down feedback.


Assuntos
Degeneração Macular , Retina , Córtex Visual , Humanos , Reprodutibilidade dos Testes , Retina/patologia , Retina/fisiopatologia , Escotoma , Córtex Visual/diagnóstico por imagem , Percepção Visual
11.
Eur J Ophthalmol ; 31(3): 920-931, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736500

RESUMO

BACKGROUND: To date there are yet no available approved therapies for Geographic Atrophy (GA) secondary to age-related macular degeneration (AMD). METHODS: Single site, non-randomized safety and efficacy study presenting the preliminary results in a cohort of five late stage AMD (GA) patients successfully implanted with the Argus II Retinal Prosthesis System (Second Sight Medical Products Inc., Sylmar, CA, USA). Extensive fundus imaging including retinal photographs from which the GA area was measured. A combination of custom and traditional tests designed for very low vision subjects assessed visual function in study subjects. A Functional Low-Vision Observer Rated Assessment was carried out to evaluate the impact of the system on the subject's daily life. In addition, a study to evaluate structural characteristics of the visual cortex of the brain was performed in one subject using magnetic resonance imaging. RESULTS: Seven device-related adverse events were reported, four of which were classed as serious adverse events. Retinal detachment was reported in three patients and was successfully treated within 12 months of onset. Testing showed an improvement in visual function in three of five patients with the system turned on. Magnetic resonance imaging assessed in one patient after implantation indicates a selective increase in cortical myelin and thickness in visual brain regions 1 year post implantation. CONCLUSIONS: Epiretinal prostheses can successfully be implanted in those affected by GA secondary to late-stage AMD and can elicit visual percepts by electrical stimulation of residual neuroretinal elements and improve basic visual function in those affected.


Assuntos
Atrofia Geográfica , Degeneração Macular , Baixa Visão , Próteses Visuais , Eletrônica , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/etiologia , Humanos , Degeneração Macular/complicações
12.
Curr Biol ; 31(2): R76-R78, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33497635

RESUMO

Is the brain able to reorganise following loss of sensory input? New work on individuals with sight loss shows that, while brain areas normally allocated to vision respond to other sensory stimuli, those responses are unlikely to mean the brain has rewired.


Assuntos
Mapeamento Encefálico , Plasticidade Neuronal , Encéfalo , Humanos , Visão Ocular
13.
Invest Ophthalmol Vis Sci ; 60(15): 5045-5051, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31800962

RESUMO

Purpose: Previous research has shown atrophy of visual cortex can occur in retinotopic representations of retinal lesions resulting from eye disease. However, the time course of atrophy cannot be established from these cross-sectional studies, which included patients with longstanding disease of varying severity. Our aim, therefore, was to measure visual cortical structure over time in participants after onset of unilateral visual loss resulting from AMD. Methods: Inclusion criteria were onset of acute unilateral neovascular AMD with bilateral dry AMD based on clinical examination. Therefore, substantial loss of unilateral visual input to cortex was relatively well-defined in time. Changes in cortical anatomy were assessed in the occipital lobe as a whole, and in cortical representations of the lesion and intact retina, the lesion and intact projection zones, respectively. Whole brain, T1-weighted magnetic resonance imaging was taken at diagnosis (before antiangiogenic treatment to stabilize the retina), during the 3- to 4-month initial treatment period, with a long-term follow-up approximately 5 (range 3.8-6.1 years) years later. Results: Significant cortical atrophy was detected at long-term follow-up only, with a reduction in mean cortical volume across the whole occipital lobe. Importantly, this reduction was explained by cortical thinning of the lesion projection zone, which suggests additional changes to those associated with normal aging. Over the period of study, antiangiogenic treatment stabilized visual acuity and central retinal thickness, suggesting that the atrophy detected was most likely governed by long-term decreased visual input. Conclusions: Our results indicate that consequences of eye disease on visual cortex are atrophic and retinotopic. Our work also raises the potential to follow the status of visual cortex in individuals over time to inform on how best to treat patients, particularly with restorative techniques.


Assuntos
Cegueira/diagnóstico , Degeneração Macular/diagnóstico , Imageamento por Ressonância Magnética/métodos , Acuidade Visual , Córtex Visual/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia/diagnóstico , Cegueira/etiologia , Cegueira/fisiopatologia , Estudos Transversais , Progressão da Doença , Feminino , Seguimentos , Humanos , Degeneração Macular/complicações , Degeneração Macular/fisiopatologia , Masculino , Retina/patologia , Estudos Retrospectivos , Fatores de Tempo , Tomografia de Coerência Óptica
14.
Front Psychol ; 8: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220085

RESUMO

Following auditory deprivation, the remaining sense of vision has shown selective enhancement in visual cognition, especially in the area of near peripheral vision. Visual acuity is poor in the far periphery and may be an area where sound confers the greatest advantage in hearing persons. Experience with a visuospatial language such as British Sign Language (BSL) makes additional demands on the visual system. To test the different and separable effects of deafness and use of a visuo-spatial language on far peripheral visual processing, we investigated visual reaction times (RTs) and response accuracy to visual stimuli, between 30° and 85° along the four cardinal and four inter-cardinal meridians. We used three luminances of static, briefly illuminated stimuli in visually normal adults. The cohort tested included profoundly congenitally deaf adults (N = 17), hearing fluent BSL users (N = 8) and hearing non-signing adults (N = 18). All participants were tested using a peripheral forced choice paradigm designed previously to test deaf and hearing children (Codina et al., 2011a). Deaf adults demonstrated significantly faster RTs to all far peripheral stimuli and exceeded the abilities of both signing and non-signing hearing adults. Deaf adults were significantly faster than BSL interpreters, who in turn were significantly faster than hearing non-signing adults. The differences in RT demonstrated between groups were consistent across all visual field meridians and were not localized to any one region of the visual field. There were no differences found between any groups in accuracy of detecting these static stimuli at any retinal location. Early onset auditory deprivation appears to lead to a response time visual advantage in far peripheral responses to briefly presented, static LED stimuli, especially in the right visual field. Fluency in BSL facilitates faster visuo-motor responses in the peripheral visual field, but to a lesser extent than congenital, profound deafness.

15.
Biomed Res Int ; 2017: 5496196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29349078

RESUMO

Researchers are increasingly attempting to undertake electroencephalography (EEG) recordings in novel environments and contexts outside of the traditional static laboratory setting. The term "mobile EEG," although commonly used to describe many of these undertakings, is ambiguous, since it attempts to encompass a wide range of EEG device mobility, participant mobility, and system specifications used across investigations. To provide quantitative parameters for "mobile EEG," we developed a Categorisation of Mobile EEG (CoME) scheme based upon scoring of device mobility (D, from 0, off-body, to 5, head-mounted with no additional equipment), participant mobility (P, from 0, static, to 5, unconstrained running), system specification (S, from 4, lowest, to 20, highest), and number of channels (C) used. The CoME scheme was applied to twenty-nine published mobile EEG studies. Device mobility scores ranged from 0D to 4D, participant mobility scores from 0P to 4P, and system specification scores from 6S to 17S. The format of the scores for the four parameters is given, for example, as (2D, 4P, 17S, 32C) and readily enables comparisons across studies. Our CoME scheme enables researchers to quantify the degree of device mobility, participant mobility, and system specification used in their "mobile EEG" investigations in a standardised way.


Assuntos
Eletroencefalografia/métodos , Aplicativos Móveis , Monitorização Ambulatorial/métodos , Pesquisa Biomédica , Humanos , Smartphone
16.
Neuropsychologia ; 93(Pt A): 76-84, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27729230

RESUMO

Familiar face recognition is remarkably invariant across huge image differences, yet little is understood concerning how image-invariant recognition is achieved. To investigate the neural correlates of invariance, we localized the core face-responsive regions and then compared the pattern of fMR-adaptation to different stimulus transformations in each region to behavioural data demonstrating the impact of the same transformations on familiar face recognition. In Experiment 1, we compared linear transformations of size and aspect ratio to a non-linear transformation affecting only part of the face. We found that adaptation to facial identity in face-selective regions showed invariance to linear changes, but there was no invariance to non-linear changes. In Experiment 2, we measured the sensitivity to non-linear changes that fell within the normal range of variation across face images. We found no adaptation to facial identity for any of the non-linear changes in the image, including to faces that varied in different levels of caricature. These results show a compelling difference in the sensitivity to linear compared to non-linear image changes in face-selective regions of the human brain that is only partially consistent with their effect on behavioural judgements of identity. We conclude that while regions such as the FFA may well be involved in the recognition of face identity, they are more likely to contribute to some form of normalisation that underpins subsequent recognition than to form the neural substrate of recognition per se.


Assuntos
Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Análise de Variância , Mapeamento Encefálico , Discriminação Psicológica/fisiologia , Feminino , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa/métodos , Adulto Jovem
17.
Ophthalmic Physiol Opt ; 36(3): 240-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27112223

RESUMO

PURPOSE: Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post-mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non-invasively examine the effects of eye disease on the whole visual pathway, including the lateral geniculate nucleus, striate and extrastriate cortex. This review aims to summarise research using MRI to investigate structural, chemical and functional effects of eye diseases, including: macular degeneration, retinitis pigmentosa, glaucoma, albinism, and amblyopia. RECENT FINDINGS: Structural MRI has demonstrated significant abnormalities within both grey and white matter densities across both visual and non-visual areas. Functional MRI studies have also provided extensive evidence of functional changes throughout the whole of the visual pathway following visual loss, particularly in amblyopia. MR spectroscopy techniques have also revealed several abnormalities in metabolite concentrations in both glaucoma and age-related macular degeneration. GABA-edited MR spectroscopy on the other hand has identified possible evidence of plasticity within visual cortex. SUMMARY: Collectively, using MRI to investigate the effects on the visual pathway following disease and dysfunction has revealed a rich pattern of results allowing for better characterisation of disease. In the future MRI will likely play an important role in assessing the impact of eye disease on the visual pathway and how it progresses over time.


Assuntos
Imageamento por Ressonância Magnética/métodos , Transtornos da Visão/diagnóstico , Córtex Visual/patologia , Animais , Humanos , Vias Visuais/patologia
18.
PLoS One ; 11(1): e0146684, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26789126

RESUMO

INTRODUCTION: Macular degeneration (MD) can cause a central visual field defect. In a previous study, we found volumetric reductions along the entire visual pathways of MD patients, possibly indicating degeneration of inactive neuronal tissue. This may have important implications. In particular, new therapeutic strategies to restore retinal function rely on intact visual pathways and cortex to reestablish visual function. Here we reanalyze the data of our previous study using surface-based morphometry (SBM) rather than voxel-based morphometry (VBM). This can help determine the robustness of the findings and will lead to a better understanding of the nature of neuroanatomical changes associated with MD. METHODS: The metrics of interest were acquired by performing SBM analysis on T1-weighted MRI data acquired from 113 subjects: patients with juvenile MD (JMD; n = 34), patients with age-related MD (AMD; n = 24) and healthy age-matched controls (HC; n = 55). RESULTS: Relative to age-matched controls, JMD patients showed a thinner cortex, a smaller cortical surface area and a lower grey matter volume in V1 and V2, while AMD patients showed thinning of the cortex in V2. Neither patient group showed a significant difference in mean curvature of the visual cortex. DISCUSSION: The thinner cortex, smaller surface area and lower grey matter volume in the visual cortex of JMD patients are consistent with our previous results showing a volumetric reduction in their visual cortex. Finding comparable results using two rather different analysis techniques suggests the presence of marked cortical degeneration in the JMD patients. In the AMD patients, we found a thinner cortex in V2 but not in V1. In contrast to our previous VBM analysis, SBM revealed no volumetric reductions of the visual cortex. This suggests that the cortical changes in AMD patients are relatively subtle, as they apparently can be missed by one of the methods.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Degeneração Macular/diagnóstico por imagem , Imageamento por Ressonância Magnética , Visão Ocular , Córtex Visual/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Degeneração Macular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Radiografia , Córtex Visual/fisiopatologia
19.
Cereb Cortex ; 24(3): 737-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23172771

RESUMO

Neural models of human face perception propose parallel pathways. One pathway (including posterior superior temporal sulcus, pSTS) is responsible for processing changeable aspects of faces such as gaze and expression, and the other pathway (including the fusiform face area, FFA) is responsible for relatively invariant aspects such as identity. However, to be socially meaningful, changes in expression and gaze must be tracked across an individual face. Our aim was to investigate how this is achieved. Using functional magnetic resonance imaging, we found a region in pSTS that responded more to sequences of faces varying in gaze and expression in which the identity was constant compared with sequences in which the identity varied. To determine whether this preferential response to same identity faces was due to the processing of identity in the pSTS or was a result of interactions between pSTS and other regions thought to code face identity, we measured the functional connectivity between face-selective regions. We found increased functional connectivity between the pSTS and FFA when participants viewed same identity faces compared with different identity faces. Together, these results suggest that distinct neural pathways involved in expression and identity interact to process the changeable features of the face in a socially meaningful way.


Assuntos
Mapeamento Encefálico , Face , Expressão Facial , Fixação Ocular/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Estimulação Luminosa , Adulto Jovem
20.
Cortex ; 56: 99-110, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23453791

RESUMO

INTRODUCTION: Macular degeneration (MD) causes central visual field loss. When field defects occur in both eyes and overlap, parts of the visual pathways are no longer stimulated. Previous reports have shown that this affects the grey matter of the primary visual cortex, but possible effects on the preceding visual pathway structures have not been fully established. METHODS: In this multicentre study, we used high-resolution anatomical magnetic resonance imaging and voxel-based morphometry to investigate the visual pathway structures up to the primary visual cortex of patients with age-related macular degeneration (AMD) and juvenile macular degeneration (JMD). RESULTS: Compared to age-matched healthy controls, in patients with JMD we found volumetric reductions in the optic nerves, the chiasm, the lateral geniculate bodies, the optic radiations and the visual cortex. In patients with AMD we found volumetric reductions in the lateral geniculate bodies, the optic radiations and the visual cortex. An unexpected finding was that AMD, but not JMD, was associated with a reduction in frontal white matter volume. CONCLUSION: MD is associated with degeneration of structures along the visual pathways. A reduction in frontal white matter volume only present in the AMD patients may constitute a neural correlate of previously reported association between AMD and mild cognitive impairment.


Assuntos
Corpos Geniculados/patologia , Degeneração Macular/patologia , Nervo Óptico/patologia , Córtex Visual/patologia , Vias Visuais/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...